Flood Forecasting Study using Neural Network Theory and Hydraulic Routing
نویسندگان
چکیده
منابع مشابه
Flood Forecasting Using Neural Networks
This paper deals with flood routing in rivers using neural networks. The unsteady river flow may be formulated in terms of two one-dimensional partial differential equations. These are the Saint Venant flow continuity and dynamic equations. Several methods of solution of these equations are known. These methods are based upon characteristics of equations, finite difference, finite element and f...
متن کاملGIS-based multidate flood forecasting using hydraulic model
Flood plains and the area near to the rivers channels, because of their special circumstances such as fertility and water resources are appropriate situations for the social and agricultural activities, but due to morphological characteristics usually, these area are affected by different flood hazards. However, in these areas, determination of flood zone and its height and also detecting prope...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
A flood forecasting neural network model with genetic algorithm
It will be useful to attain a quick and accurate flood forecasting, particularly in a flood-prone region. The accomplishment of this objective can have far reaching significance by extending the lead time for issuing disaster warnings and furnishing ample time for citizens in vulnerable areas to take appropriate action, such as evacuation. In this paper, a novel hybrid model based on recent art...
متن کاملFuzzy Clustering Neural Network as Flood Forecasting Model
Flood forecasting is always a challenge in Taiwan, which has a subtropical climate and high mountains. This paper develops a fuzzy clustering neural network (FCNN), and implements this novel structure and reasoning process for flood forecasting. The FCNN has a hybrid learning scheme; the unsupervised learning scheme employs fuzzy min-max clustering to extract information from the input data. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korea Water Resources Association
سال: 2014
ISSN: 1226-6280
DOI: 10.3741/jkwra.2014.47.2.207